當(dāng)前位置:首頁(yè) > 成功案例
有機(jī)太陽(yáng)能電池(OSCs)因其在柔性和可穿戴光伏設(shè)備制造中的低成本溶液加工方法而備受關(guān)注。特別是全聚合物太陽(yáng)能電池(all-PSCs),由于其良好的柔性和形態(tài)穩(wěn)定性,在柔性設(shè)備領(lǐng)域顯示出巨大潛力。然而,早期用于all-PSCs的聚合物受體在近紅外區(qū)域的吸收能力較弱,且分子堆積不理想,限制了其進(jìn)一步發(fā)展。為了克服這些挑戰(zhàn),提高功率轉(zhuǎn)換效率(PCE),研究人員提出了聚合小分子受體(PSMA)的概念,利用窄帶隙小分子受體(SMAs)作為關(guān)鍵構(gòu)建模塊。PSMAs不僅具有低帶隙和強(qiáng)吸收的優(yōu)點(diǎn),還具有適合的
有機(jī)太陽(yáng)能電池(OSCs)的發(fā)展已見(jiàn)成效,采用非富勒烯受體(NFAs)的小分子材料,使其能量轉(zhuǎn)換效率(PCE)超過(guò)了19%。然而,有機(jī)材料在吸收光譜上存在局限,尤其是NIR和NUV區(qū)域的吸收不佳。為了提升光吸收能力,研究人員提出了低帶隙NFAs和多組分策略,雖然提高了JSC,但在單一結(jié)OSCs中無(wú)法最小化高能量光子的能量損失。串聯(lián)太陽(yáng)能電池(TSCs)結(jié)合了寬帶隙(WBG)和低帶隙(LBG)半導(dǎo)體,可以擴(kuò)展吸收光譜,減少能量損失,從而提升光伏性能。研究人員探索了2T和4T兩種結(jié)構(gòu),其中2T架構(gòu)因
導(dǎo)讀目錄光伏技術(shù)的新發(fā)表:無(wú)定形鈍化層提升鈣鈦礦電池性能1. 研究方法與表征設(shè)備分析2. 非晶態(tài)(lysine)2Pbl2層展現(xiàn)高光電轉(zhuǎn)換效率成果 光伏技術(shù)的新發(fā)表 :無(wú)定形鈍化層提升鈣鈦礦電池性能近日,由中科院院士楊德仁團(tuán)隊(duì)、浙江大學(xué)王勇 及蘇州大學(xué)寧為華 共同發(fā)表于Nature Communications 2024年第15期一突破性研究為高效鈣鈦礦太陽(yáng)能電池的發(fā)展開(kāi)辟了新路徑。研究人員成功開(kāi)發(fā)出一種新型無(wú)定形(賴(lài)氨酸)2PbI2鈍化層,通過(guò)固相反應(yīng)在鈣鈦礦薄膜表面和晶界處形成。這種無(wú)定
導(dǎo)讀目錄1. 有機(jī)光伏的研究進(jìn)程與挑戰(zhàn)2. 研究動(dòng)機(jī)解析3. 研究手法與表征設(shè)備的運(yùn)用4. 有機(jī)光伏的強(qiáng)力生力軍_DP3:L8-BO 有機(jī)光伏的研究進(jìn)程與挑戰(zhàn)近年來(lái),有機(jī)光伏(OPV)因其低毒性、輕質(zhì)、柔性和大面積加工能力而備受關(guān)注,該技術(shù)取得了顯著進(jìn)步,特別是在效率、穩(wěn)定性和成本方面,為單結(jié)器件帶來(lái)了積極變化。然而,有機(jī)光伏OPV材料在實(shí)際應(yīng)用中仍面臨挑戰(zhàn),尤其是溶液可加工性問(wèn)題。武漢大學(xué)閔杰團(tuán)隊(duì)于 最新一期的Advanced Materials中介紹了一種新型高效
華中科技大學(xué)王鳴魁團(tuán)隊(duì)于 Advanced Energy Materials 第30期發(fā)表了一項(xiàng)創(chuàng)新的方法,通過(guò)使用具有推拉電子結(jié)構(gòu)配置的π共軛分子來(lái)調(diào)節(jié)埋藏界面,從而提高三陽(yáng)離子鈣鈦礦太陽(yáng)能電池的開(kāi)路電壓(Voc)。研究人員在鈣鈦礦太陽(yáng)能電池中使用了氧化錫納米晶作為電子傳輸層,并發(fā)現(xiàn)新型化學(xué)材料能夠顯著降低界面能障并鈍化埋藏界面的缺陷。這種方法將Cs0.05(FA 0.85 MA0.15)0.95Pb(I 0.85 Br 0.15)3(帶隙約為1.60 eV)鈣鈦礦太陽(yáng)能電池的開(kāi)路電壓提高到1
鈣鈦礦太陽(yáng)能電池(PSCs)因其輕質(zhì)、可溶液印刷和低成本等優(yōu)勢(shì)而受到廣泛關(guān)注。實(shí)驗(yàn)室規(guī)模的PSCs的光電性能得到了顯著提升,這使得研究范圍擴(kuò)展到了商業(yè)化潛力的熱門(mén)探索領(lǐng)域。實(shí)現(xiàn)鈣鈦礦太陽(yáng)能模組的全印刷製備對(duì)於規(guī)?;窂蕉砸呀?jīng)迫在眉睫。然而,有機(jī)傳輸層的印刷工藝和成膜特性,尤其是Spiro-OMeTAD,一直被忽視。由於墨水流變學(xué)與印刷過(guò)程不匹配以及LiTFSI-tBP添加劑的不穩(wěn)定性,印刷的Spiro-OMeTAD面臨著非均勻性和孔洞問(wèn)題。南昌大學(xué)陳義旺團(tuán)隊(duì)于2024年Energy & Env
微信掃一掃